Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 528
Filtrar
1.
Int J Mol Sci ; 23(3)2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35163830

RESUMEN

Although bacteria-free DNA in blood during systemic infection is mainly derived from bacterial death, translocation of the DNA from the gut into the blood circulation (gut translocation) is also possible. Hence, several mouse models with experiments on macrophages were conducted to explore the sources, influences, and impacts of bacteria-free DNA in sepsis. First, bacteria-free DNA and bacteriome in blood were demonstrated in cecal ligation and puncture (CLP) sepsis mice. Second, administration of bacterial lysate (a source of bacterial DNA) in dextran sulfate solution (DSS)-induced mucositis mice elevated blood bacteria-free DNA without bacteremia supported gut translocation of free DNA. The absence of blood bacteria-free DNA in DSS mice without bacterial lysate implies an impact of the abundance of bacterial DNA in intestinal contents on the translocation of free DNA. Third, higher serum cytokines in mice after injection of combined bacterial DNA with lipopolysaccharide (LPS), when compared to LPS injection alone, supported an influence of blood bacteria-free DNA on systemic inflammation. The synergistic effects of free DNA and LPS on macrophage pro-inflammatory responses, as indicated by supernatant cytokines (TNF-α, IL-6, and IL-10), pro-inflammatory genes (NFκB, iNOS, and IL-1ß), and profound energy alteration (enhanced glycolysis with reduced mitochondrial functions), which was neutralized by TLR-9 inhibition (chloroquine), were demonstrated. In conclusion, the presence of bacteria-free DNA in sepsis mice is partly due to gut translocation of bacteria-free DNA into the systemic circulation, which would enhance sepsis severity. Inhibition of the responses against bacterial DNA by TLR-9 inhibition could attenuate LPS-DNA synergy in macrophages and might help improve sepsis hyper-inflammation in some situations.


Asunto(s)
Citocinas/sangre , ADN Bacteriano/inmunología , Sulfato de Dextran/efectos adversos , Lipopolisacáridos/inmunología , Mucositis/inmunología , Sepsis/inmunología , Animales , Modelos Animales de Enfermedad , Heces/microbiología , Interleucina-10/sangre , Interleucina-6/sangre , Lipopolisacáridos/efectos adversos , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Ratones , Mucositis/inducido químicamente , Mucositis/microbiología , Sepsis/inducido químicamente , Sepsis/microbiología , Factor de Necrosis Tumoral alfa/sangre
2.
JCI Insight ; 6(19)2021 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-34622805

RESUMEN

Common variable immunodeficiency (CVID) is characterized by profound primary antibody defects and frequent infections, yet autoimmune/inflammatory complications of unclear origin occur in 50% of individuals and lead to increased mortality. Here, we show that circulating bacterial 16S rDNA belonging to gut commensals was significantly increased in CVID serum (P < 0.0001), especially in patients with inflammatory manifestations (P = 0.0007). Levels of serum bacterial DNA were associated with parameters of systemic immune activation, increased serum IFN-γ, and the lowest numbers of isotype-switched memory B cells. Bacterial DNA was bioactive in vitro and induced robust host IFN-γ responses, especially among patients with CVID with inflammatory manifestations. Patients with X-linked agammaglobulinemia (Bruton tyrosine kinase [BTK] deficiency) also had increased circulating bacterial 16S rDNA but did not exhibit prominent immune activation, suggesting that BTK may be a host modifier, dampening immune responses to microbial translocation. These data reveal a mechanism for chronic immune activation in CVID and potential therapeutic strategies to modify the clinical outcomes of this disease.


Asunto(s)
Agammaglobulinemia/sangre , Inmunodeficiencia Variable Común/sangre , ADN Bacteriano/sangre , ADN Ribosómico/sangre , Microbioma Gastrointestinal/genética , Enfermedades Genéticas Ligadas al Cromosoma X/sangre , Inflamación/sangre , Adolescente , Adulto , Agammaglobulinemia/inmunología , Anciano , Anemia Hemolítica Autoinmune/sangre , Anemia Hemolítica Autoinmune/complicaciones , Anemia Hemolítica Autoinmune/inmunología , Linfocitos B/inmunología , Traslocación Bacteriana , Niño , Preescolar , Inmunodeficiencia Variable Común/complicaciones , Inmunodeficiencia Variable Común/inmunología , ADN Bacteriano/inmunología , ADN Ribosómico/inmunología , Femenino , Enfermedades Genéticas Ligadas al Cromosoma X/inmunología , Granuloma/sangre , Granuloma/complicaciones , Granuloma/inmunología , Humanos , Cambio de Clase de Inmunoglobulina , Memoria Inmunológica/inmunología , Inflamación/inmunología , Interferón gamma/sangre , Enfermedades Pulmonares Intersticiales/sangre , Enfermedades Pulmonares Intersticiales/complicaciones , Enfermedades Pulmonares Intersticiales/inmunología , Masculino , Persona de Mediana Edad , Poliendocrinopatías Autoinmunes/sangre , Poliendocrinopatías Autoinmunes/complicaciones , Poliendocrinopatías Autoinmunes/inmunología , Púrpura Trombocitopénica Idiopática/sangre , Púrpura Trombocitopénica Idiopática/complicaciones , Púrpura Trombocitopénica Idiopática/inmunología , Esplenomegalia/sangre , Esplenomegalia/complicaciones , Esplenomegalia/inmunología , Adulto Joven
3.
J Clin Invest ; 131(16)2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-34396989

RESUMEN

Herein, we describe an extracellular function of the vertebrate high-mobility group box 1 protein (HMGB1) in the proliferation of bacterial biofilms. Within host cells, HMGB1 functions as a DNA architectural protein, similar to the ubiquitous DNABII family of bacterial proteins; despite that, these proteins share no amino acid sequence identity. Extracellularly, HMGB1 induces a proinflammatory immune response, whereas the DNABII proteins stabilize the extracellular DNA-dependent matrix that maintains bacterial biofilms. We showed that when both proteins converged on extracellular DNA within bacterial biofilms, HMGB1, unlike the DNABII proteins, disrupted biofilms both in vitro (including the high-priority ESKAPEE pathogens) and in vivo in 2 distinct animal models, albeit with induction of a strong inflammatory response that we attenuated by a single engineered amino acid change. We propose a model where extracellular HMGB1 balances the degree of induced inflammation and biofilm containment without excessive release of biofilm-resident bacteria.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Proteína HMGB1/inmunología , Interacciones Microbiota-Huesped/inmunología , Animales , Proteínas Bacterianas/inmunología , Chinchilla , ADN Bacteriano/inmunología , Matriz Extracelular/inmunología , Trampas Extracelulares/inmunología , Femenino , Humanos , Inmunidad Innata , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Inmunológicos , Neutrófilos/inmunología
4.
J Leukoc Biol ; 109(5): 991-998, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33527516

RESUMEN

Bacterial DNA containing unmethylated CpG motifs can activate immune cells to release proinflammatory cytokines. Here, the role of bacterial DNA containing CpG motifs in diseases with a focus on arthritis is discussed. Our studies demonstrate that the intraarticular injection of bacterial DNA and oligodeoxynucleotides containing CpG motifs (CpG ODN) induced arthritis. The induction of arthritis involves the role of macrophages over other cells such as neutrophils, NK cells, and lymphocytes. TNF-α and TNFRI play an important role in the development of arthritis. NF-κB also plays a critical regulatory role in arthritis. Systemic anti-inflammatory treatment, along with antibiotic therapy, has beneficial effects on the course and the outcome of bacterial arthritis. Thus, future treatment strategies for bacterial arthritis should include attempts to minimizing bacterial growth while blocking the proinflammatory effects of the bacterial DNA. Significant therapeutic efficiency has also been shown by CpG ODN-mediated Th1 immune activation in mouse models of cancer, infectious disease, and allergy/asthma.


Asunto(s)
ADN Bacteriano/metabolismo , Enfermedad/genética , Oligodesoxirribonucleótidos/metabolismo , Animales , ADN Bacteriano/inmunología , Humanos , Modelos Biológicos , Terapia Molecular Dirigida , Oligodesoxirribonucleótidos/inmunología
5.
Gastroenterology ; 160(3): 863-874, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33152356

RESUMEN

BACKGROUND & AIMS: Liver CRIg+ (complement receptor of the immunoglobulin superfamily) macrophages play a critical role in filtering bacteria and their products from circulation. Translocation of microbiota-derived products from an impaired gut barrier contributes to the development of obesity-associated tissue inflammation and insulin resistance. However, the critical role of CRIg+ macrophages in clearing microbiota-derived products from the bloodstream in the context of obesity is largely unknown. METHODS: We performed studies with CRIg-/-, C3-/-, cGAS-/-, and their wild-type littermate mice. The CRIg+ macrophage population and bacterial DNA abundance were examined in both mouse and human liver by either flow cytometric or immunohistochemistry analysis. Gut microbial DNA-containing extracellular vesicles (mEVs) were adoptively transferred into CRIg-/-, C3-/-, or wild-type mice, and tissue inflammation and insulin sensitivity were measured in these mice. After coculture with gut mEVs, cellular insulin responses and cGAS/STING-mediated inflammatory responses were evaluated. RESULTS: Gut mEVs can reach metabolic tissues in obesity. Liver CRIg+ macrophages efficiently clear mEVs from the bloodstream through a C3-dependent opsonization mechanism, whereas obesity elicits a marked reduction in the CRIg+ macrophage population. Depletion of CRIg+ cells results in the spread of mEVs into distant metabolic tissues, subsequently exacerbating tissue inflammation and metabolic disorders. Additionally, in vitro treatment of obese mEVs directly triggers inflammation and insulin resistance of insulin target cells. Depletion of microbial DNA blunts the pathogenic effects of intestinal EVs. Furthermore, the cGAS/STING pathway is crucial for microbial DNA-mediated inflammatory responses. CONCLUSIONS: Deficiency of CRIg+ macrophages and leakage of intestinal EVs containing microbial DNA contribute to the development of obesity-associated tissue inflammation and metabolic diseases.


Asunto(s)
Microbioma Gastrointestinal/inmunología , Hepatitis/inmunología , Resistencia a la Insulina/inmunología , Macrófagos del Hígado/inmunología , Obesidad/complicaciones , Animales , Complemento C3/genética , ADN Bacteriano/inmunología , ADN Bacteriano/metabolismo , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Vesículas Extracelulares/inmunología , Vesículas Extracelulares/metabolismo , Microbioma Gastrointestinal/genética , Hepatitis/microbiología , Hepatitis/patología , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Macrófagos del Hígado/metabolismo , Hígado/citología , Hígado/inmunología , Hígado/patología , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Nucleotidiltransferasas/metabolismo , Obesidad/sangre , Obesidad/inmunología , Receptores de Complemento/metabolismo , Transducción de Señal/inmunología
6.
Front Immunol ; 11: 593353, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33240280

RESUMEN

Autoimmune diseases, such as systemic lupus erythematosus, are characterized by excessive inflammation in response to self-antigens. Loss of appropriate immunoregulatory mechanisms contribute to disease exacerbation. We previously showed the suppressive effect of vancomycin treatment during the "active-disease" stage of lupus. In this study, we sought to understand the effect of the same treatment given before disease onset. To develop a model in which to test the regulatory role of the gut microbiota in modifying autoimmunity, we treated lupus-prone mice with vancomycin in the period before disease development (3-8 weeks of age). We found that administration of vancomycin to female MRL/lpr mice early, only during the pre-disease period but not from 3 to 15 weeks of age, led to disease exacerbation. Early vancomycin administration also reduced splenic regulatory B (Breg) cell numbers, as well as reduced circulating IL-10 and IL-35 in 8-week old mice. Further, we found that during the pre-disease period, administration of activated IL-10 producing Breg cells to mice treated with vancomycin suppressed lupus initiation, and that bacterial DNA from the gut microbiota was an inducer of Breg function. Oral gavage of bacterial DNA to mice treated with vancomycin increased Breg cells in the spleen and mesenteric lymph node at 8 weeks of age and reduced autoimmune disease severity at 15 weeks. This work suggests that a form of oral tolerance induced by bacterial DNA-mediated expansion of Breg cells suppress disease onset in the autoimmune-prone MRL/lpr mouse model. Future studies are warranted to further define the mechanism behind bacterial DNA promoting Breg cells.


Asunto(s)
Autoinmunidad , Linfocitos B Reguladores/inmunología , Linfocitos B Reguladores/metabolismo , ADN Bacteriano/inmunología , Microbioma Gastrointestinal/inmunología , Lupus Eritematoso Sistémico/etiología , Lupus Eritematoso Sistémico/metabolismo , Traslado Adoptivo , Animales , Biomarcadores , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Femenino , Microbioma Gastrointestinal/efectos de los fármacos , Inmunomodulación , Lupus Eritematoso Sistémico/diagnóstico , Lupus Eritematoso Sistémico/terapia , Ratones , Ratones Endogámicos MRL lpr , Índice de Severidad de la Enfermedad , Vancomicina/farmacología
7.
Sci Rep ; 10(1): 18293, 2020 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-33106559

RESUMEN

Bacterial-derived RNA and DNA can function as ligands for intracellular receptor activation and induce downstream signaling to modulate the host response to bacterial infection. The mechanisms underlying the secretion of immunomodulatory RNA and DNA by pathogens such as Staphylococcus aureus and their delivery to intracellular host cell receptors are not well understood. Recently, extracellular membrane vesicle (MV) production has been proposed as a general secretion mechanism that could facilitate the delivery of functional bacterial nucleic acids into host cells. S. aureus produce membrane-bound, spherical, nano-sized, MVs packaged with a select array of bioactive macromolecules and they have been shown to play important roles in bacterial virulence and in immune modulation through the transmission of biologic signals to host cells. Here we show that S. aureus secretes RNA and DNA molecules that are mostly protected from degradation by their association with MVs. Importantly, we demonstrate that MVs can be delivered into cultured macrophage cells and subsequently stimulate a potent IFN-ß response in recipient cells via activation of endosomal Toll-like receptors. These findings advance our understanding of the mechanisms by which bacterial nucleic acids traffic extracellularly to trigger the modulation of host immune responses.


Asunto(s)
ADN Bacteriano/inmunología , Vesículas Extracelulares/genética , Macrófagos/virología , ARN Bacteriano/inmunología , Staphylococcus aureus/patogenicidad , Animales , Vesículas Extracelulares/inmunología , Interferón gamma/genética , Macrófagos/citología , Macrófagos/inmunología , Ratones , Tamaño de la Partícula , Células RAW 264.7 , Staphylococcus aureus/genética , Staphylococcus aureus/inmunología , Receptores Toll-Like/genética , Virulencia
8.
Allergy Asthma Proc ; 41(5): 372-385, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32867892

RESUMEN

Background: Allergic and autoimmune diseases comprise a group of inflammatory disorders caused by aberrant immune responses in which CD25+ forkhead box P3-positive regulatory T cells (Treg) cells that normally suppress inflammatory events are often poorly functioning. This has stimulated an intensive investigative effort to find ways of increasing Tregs as a method of therapy for these conditions. Commensal microbiota known to have health benefits in humans include the lactic acid-producing, probiotic bacteria B. longum subsp. infantis and Lactobacillus rhamnosus. Mechanistically, several mechanisms have been proposed to explain how probiotics may favorably affect host immunity, including the induction of Tregs. Analysis of emerging data from several laboratories, including our own, suggest that DNA methylation may be an important determinant of immune reactivity responsible for Treg induction. Although methylated CpG moieties in normal mammalian DNA are both noninflammatory and lack immunogenicity, unmethylated CpGs, found largely in microbial DNA, are immunostimulatory and display proinflammatory properties. Objective: We hypothesize that microbiota with more DNA methylation may potentiate Treg induction to a greater degree than microbiota with a lower content of methylation. The purpose of the present study was to test this hypothesis by studying the methylation status of whole genomic DNA (gDNA) and the Treg-inducing capacity of purified gDNA in each of the probiotic bacteria B. longum subsp. infantis and L. rhamnosus, and a pathogenic Escherichia coli strain B. Results: We showed that gDNA from B. longum subsp. infantis is a potent Treg inducer that displays a dose-dependent response pattern at a dose threshold of 20 µg of gDNA. No similar Treg-inducing responses were observed with the gDNA from L. rhamnosus or E. coli. We identified a unique CpG methylated motif in the gDNA sequencing of B. longum subsp. infantis which was not found in L. rhamnosus or E. coli strain B. Conclusion: Although the literature indicates that both B. longum subsp. infantis and L. rhamnosus strains contribute to health, our data suggest that they do so by different mechanisms. Further, because of its small molecular size, low cost, ease of synthesis, and unique Treg-inducing feature, this methylated CpG oligodeoxynucleotide (ODN) from B. longum would offer many attractive features for an ideal novel therapeutic vaccine candidate for the treatment of immunologic diseases, such as the allergic and autoimmune disorders, in which Treg populations are diminished.


Asunto(s)
Bifidobacterium longum subspecies infantis/inmunología , Islas de CpG/inmunología , ADN Bacteriano/inmunología , Microbiota/inmunología , Linfocitos T Reguladores/inmunología , Células Cultivadas , Metilación de ADN , Factores de Transcripción Forkhead/metabolismo , Genoma , Humanos , Subunidad alfa del Receptor de Interleucina-2/metabolismo , Lacticaseibacillus rhamnosus/inmunología , Activación de Linfocitos , Probióticos
9.
Vet Microbiol ; 246: 108732, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32605752

RESUMEN

Campylobacter jejuni colonizes the chicken gut at a high density without causing disease. However, consumption of poultry products contaminated with this bacterium causes gastroenteritis in humans. Therefore, it is critically important to reduce the Campylobacter burden in poultry products to prevent transmission to humans. Evidence indicates that enhancing intestinal mucosal immune responses is of paramount importance for preventing or reducing Campylobacter colonization in chickens. In view of this, the present study was undertaken to evaluate host responses to different C. jejuni-derived ligands, including lipooligosaccharide (LOS), outer membrane proteins (OMPs), and genomic DNA, with the ultimate goal of identifying a ligand with potent immunostimulatory capacity to serve as a mucosal vaccine adjuvant against enteric infections in chickens. The results revealed that C. jejuni pathogen-associated molecular patterns (PAMPs) varied in their ability to induce the expression of cytokines and chemokines in chicken macrophages and cecal tonsil mononuclear cells and nitric oxide production in macrophages. In addition, C. jejuni OMPs demonstrated superior activity over LOS and DNA ligands in eliciting cytokine expression associated with T helper (Th)1 and Th2 responses (interferon [IFN]-γ and interleukin [IL]-13, respectively), in addition to expression of pro-inflammatory cytokines (IL-1ß), chemokine (CXCLi2), and regulatory cytokines (IL-10 and TGFß1/4) in cecal tonsil cells. Importantly, in addition to their ability to induce innate responses, OMPs could also function as antigens to elicit C. jejuni-specific antibody responses and thereby confer dual protection against C. jejuni infection. Further studies are required to assess the protective efficacy of C. jejuni OMPs against C. jejuni infection in chickens.


Asunto(s)
Campylobacter/inmunología , Quimiocinas/genética , Citocinas/genética , Inmunidad Mucosa , Leucocitos Mononucleares/inmunología , Macrófagos/inmunología , Adyuvantes Inmunológicos/análisis , Animales , Proteínas de la Membrana Bacteriana Externa/inmunología , Campylobacter/genética , Pollos/inmunología , ADN Bacteriano/inmunología , Interacciones Huésped-Patógeno/inmunología , Leucocitos Mononucleares/microbiología , Ligandos , Lipopolisacáridos/inmunología , Macrófagos/microbiología , Tonsila Palatina/citología , Tonsila Palatina/inmunología , Tonsila Palatina/microbiología
10.
BMC Microbiol ; 20(1): 217, 2020 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-32689952

RESUMEN

BACKGROUND: Lactobacillus gasseri OLL2809 can highly induce interleukin (IL)-12 production in immune cells. Even though beneficial properties of this strain for both humans and animals have been reported, the mechanism by which the bacteria induces the production of IL-12 in immune cells remains elusive. In this study, we investigated the mechanism of induction of IL-12 using a mouse macrophage cell line J774.1. RESULTS: Inhibition of phagocytosis of L. gasseri OLL2809, and myeloid differentiation factor 88 and Toll-like receptors (TLRs) 7 and 9 signalling attenuated IL-12 production in J774.1 cells. Total RNA and genomic DNA of L. gasseri OLL2809, when transferred to the J774.1 cells, also induced IL-12 production. The difference in the IL-12-inducing activity of Lactobacilli is attributed to the susceptibility to phagocytosis, but not to a difference in the total RNA and genomic DNA of each strain. CONCLUSION: We concluded that total RNA and genomic DNA of phagocytosed L. gasseri OLL2809 induce IL-12 production in J774.1 cell via TLRs 7 and 9, and the high IL-12-inducing activity of L. gasseri OLL2809 is due to its greater susceptibility to phagocytosis.


Asunto(s)
ADN Bacteriano/inmunología , Interleucina-12/metabolismo , Lactobacillus gasseri/genética , Macrófagos/inmunología , Glicoproteínas de Membrana/metabolismo , ARN Bacteriano/inmunología , Receptor Toll-Like 7/metabolismo , Receptor Toll-Like 9/metabolismo , Animales , Técnicas de Cultivo de Célula , Línea Celular , Genoma Bacteriano , Lactobacillus gasseri/inmunología , Macrófagos/citología , Macrófagos/microbiología , Ratones , Factor 88 de Diferenciación Mieloide/metabolismo , Fagocitosis , Transducción de Señal , Regulación hacia Arriba
11.
Immunity ; 53(1): 43-53, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32668227

RESUMEN

Besides its role as the blueprint of life, DNA can also alert the cell to the presence of microbial pathogens as well as damaged or malignant cells. A major sensor of DNA that triggers the innate immune response is cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) (cGAMP) synthase (cGAS), which produces the second messenger cGAMP. cGAMP activates stimulator of interferon genes (STING), which activates a signaling cascade leading to the production of type I interferons and other immune mediators. Recent research has demonstrated an expanding role of the cGAS-cGAMP-STING pathway in many physiological and pathological processes, including host defense against microbial infections, anti-tumor immunity, cellular senescence, autophagy, and autoimmune and inflammatory diseases. Biochemical and structural studies have elucidated the mechanism of signal transduction in the cGAS pathway at the atomic resolution. This review focuses on the structural and mechanistic insights into the roles of cGAS and STING in immunity and diseases revealed by these recent studies.


Asunto(s)
ADN Bacteriano/inmunología , ADN Viral/inmunología , Inmunidad Innata/inmunología , Proteínas de la Membrana/metabolismo , Nucleotidiltransferasas/metabolismo , Humanos , Interferón Tipo I/inmunología , Nucleótidos Cíclicos/metabolismo , Transducción de Señal/inmunología
12.
J Neuroinflammation ; 17(1): 139, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32357908

RESUMEN

BACKGROUND: Bacterial meningitis and meningoencephalitis are associated with devastating neuroinflammation. We and others have demonstrated the importance of glial cells in the initiation of immune responses to pathogens invading the central nervous system (CNS). These cells use a variety of pattern recognition receptors (PRRs) to identify common pathogen motifs and the cytosolic sensor retinoic acid inducible gene-1 (RIG-I) is known to serve as a viral PRR and initiator of interferon (IFN) responses. Intriguingly, recent evidence indicates that RIG-I also has an important role in the detection of bacterial nucleic acids, but such a role has not been investigated in glia. METHODS: In this study, we have assessed whether primary or immortalized human and murine glia express RIG-I either constitutively or following stimulation with bacteria or their products by immunoblot analysis. We have used capture ELISAs and immunoblot analysis to assess human microglial interferon regulatory factor 3 (IRF3) activation and IFN production elicited by bacterial nucleic acids and novel engineered nucleic acid nanoparticles. Furthermore, we have utilized a pharmacological inhibitor of RIG-I signaling and siRNA-mediated knockdown approaches to assess the relative importance of RIG-I in such responses. RESULTS: We demonstrate that RIG-I is constitutively expressed by human and murine microglia and astrocytes, and is elevated following bacterial infection in a pathogen and cell type-specific manner. Additionally, surface and cytosolic PRR ligands are also sufficient to enhance RIG-I expression. Importantly, our data demonstrate that bacterial RNA and DNA both trigger RIG-I-dependent IRF3 phosphorylation and subsequent type I IFN production in human microglia. This ability has been confirmed using our nucleic acid nanoparticles where we demonstrate that both RNA- and DNA-based nanoparticles can stimulate RIG-I-dependent IFN responses in these cells. CONCLUSIONS: The constitutive and bacteria-induced expression of RIG-I by human glia and its ability to mediate IFN responses to bacterial RNA and DNA and nucleic acid nanoparticles raises the intriguing possibility that RIG-I may be a potential target for therapeutic intervention during bacterial infections of the CNS, and that the use of engineered nucleic acid nanoparticles that engage this sensor might be a method to achieve this goal.


Asunto(s)
ADN Bacteriano/inmunología , Microglía/inmunología , ARN Bacteriano/inmunología , Receptores de Reconocimiento de Patrones/inmunología , Receptores de Ácido Retinoico/inmunología , Animales , Células Cultivadas , Humanos , Factor 3 Regulador del Interferón/biosíntesis , Interferones/biosíntesis , Ratones , Ratones Endogámicos C57BL
13.
Tuberculosis (Edinb) ; 121: 101890, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32279869

RESUMEN

CpG motifs in DNA sequences are recognized by Toll-like receptor 9 and activate immune cells. Bacterial genomic DNA (gDNA) has modified cytosine bases (5-methylcytosine [5 mC]) and modified adenine bases (6-methyladenine [6 mA]). 5 mC inhibits immune activation by CpG DNA; however, it is unclear whether 6 mA inhibits immune activation by CpG DNA. Mycobacterium bovis BCG (BCG) has three adenine methyltransferases (MTases) that act on specific target sequences. In this study, we examined whether the 6 mA at the target sites of adenine MTases affected the immunostimulatory activity of CpG DNA. Our results showed that only 6 mA located at the target sequence of mamA, an adenine MTase from BCG, enhanced interleukin (IL)-12p40 production from murine bone marrow-derived macrophages (BMDMs) stimulated with CpG DNA. Enhancement of IL-12p40 production in BMDMs was also observed when BMDMs were stimulated with CpG DNA ligated to oligodeoxynucleotides (ODNs) harboring 6 mA. Accordingly, we then evaluated whether gDNA from adenine MTase-deficient BCG was less efficient with regard to stimulation of BMDMs. Indeed, gDNA from a mamA-deficient BCG had less ability to activate BMDMs than that from wild-type BCG. We concluded from these results that adenine methylation on ODNs and bacterial gDNA may enhance immune activity induced by CpG DNA.


Asunto(s)
Adenina/análogos & derivados , Adyuvantes Inmunológicos/farmacología , ADN Bacteriano/inmunología , Activación de Macrófagos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Metiltransferasas/inmunología , Mycobacterium bovis/inmunología , Oligodesoxirribonucleótidos/farmacología , Receptor Toll-Like 9/agonistas , Adenina/inmunología , Animales , Células Cultivadas , ADN Bacteriano/genética , Interacciones Huésped-Patógeno , Subunidad p40 de la Interleucina-12/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/microbiología , Metiltransferasas/deficiencia , Metiltransferasas/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Mycobacterium bovis/enzimología , Mycobacterium bovis/genética , Transducción de Señal , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo
14.
Proc Natl Acad Sci U S A ; 117(14): 7971-7980, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32205444

RESUMEN

Timely resolution of bacterial infections critically depends on phagocytosis of invading pathogens by polymorphonuclear neutrophil granulocytes (PMNs), followed by PMN apoptosis and efferocytosis. Here we report that bacterial DNA (CpG DNA) and mitochondrial DNA impair phagocytosis and attenuate phagocytosis-induced apoptosis in human PMNs through Toll-like receptor 9 (TLR9)-mediated release of neutrophil elastase and proteinase 3 and subsequent down-regulation of the complement receptor C5aR. Consistently, CpG DNA delays pulmonary clearance of Escherichia coli in mice and suppresses PMN apoptosis, efferocytosis, and generation of proresolving lipid mediators, thereby prolonging lung inflammation evoked by E. coli Genetic deletion of TLR9 renders mice unresponsive to CpG DNA. We also show that aspirin-triggered 15-epi-lipoxin A4 (15-epi-LXA4) and 17-epi-resolvin D1 (17-epi-RvD1) through the receptor ALX/FPR2 antagonize cues from CpG DNA, preserve C5aR expression, restore impaired phagocytosis, and redirect human PMNs to apoptosis. Treatment of mice with 15-epi-LXA4 or 17-epi-RvD1 at the peak of inflammation accelerates clearance of bacteria, blunts PMN accumulation, and promotes PMN apoptosis and efferocytosis, thereby facilitating resolution of E. coli-evoked lung injury. Collectively, these results uncover a TLR9-mediated endogenous mechanism that impairs PMN phagocytosis and prolongs inflammation, and demonstrate both endogenous and therapeutic potential for 15-epi-LXA4 and 17-epi-RvD1 to restore impaired bacterial clearance and facilitate resolution of acute lung inflammation.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Infecciones por Escherichia coli/inmunología , Neutrófilos/inmunología , Fagocitosis/inmunología , Neumonía/inmunología , Receptor Toll-Like 9/metabolismo , Adulto , Anciano , Animales , Antiinflamatorios no Esteroideos/uso terapéutico , Apoptosis/efectos de los fármacos , Apoptosis/inmunología , Células Cultivadas , Islas de CpG/inmunología , ADN Bacteriano/inmunología , Ácidos Docosahexaenoicos/farmacología , Ácidos Docosahexaenoicos/uso terapéutico , Escherichia coli/genética , Escherichia coli/inmunología , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/patología , Femenino , Voluntarios Sanos , Humanos , Lipoxinas/farmacología , Lipoxinas/uso terapéutico , Pulmón/microbiología , Pulmón/patología , Masculino , Ratones , Persona de Mediana Edad , Neutrófilos/metabolismo , Fagocitosis/efectos de los fármacos , Neumonía/tratamiento farmacológico , Neumonía/microbiología , Neumonía/patología , Cultivo Primario de Células , Receptores de Formil Péptido/inmunología , Receptores de Formil Péptido/metabolismo , Receptores de Lipoxina/inmunología , Receptores de Lipoxina/metabolismo
15.
Mol Biotechnol ; 62(5): 289-296, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32185600

RESUMEN

Pasteurella multocida is the main cause of haemorrhagic septicaemia (HS) outbreak in livestock, such as cattle and buffaloes. Conventional vaccines such as alum-precipitated or oil-adjuvant broth bacterins were injected subcutaneously to provide protection against HS. However, the immunity developed is only for short term and needed to be administered frequently. In our previous study, a short gene fragment from Pasteurella multocida serotype B was obtained via shotgun cloning technique and later was cloned into bacterial expression system. pQE32-ABA392 was found to possess immunogenic activity towards HS when tested in vivo in rat model. In this study, the targeted gene fragment of ABA392 was sub-cloned into a DNA expression vector pVAX1 and named as pVAX1-ABA392. The new recombinant vaccine was stable and expressed on mammalian cell lines. Serum sample collected from a group of vaccinated rats for ELISA test shows that the antibody in immunized rats was present at high titer and can be tested as a vaccine candidate with challenge in further studies. This successful recombinant vaccine is immunogenic and potentially could be used as vaccine in future against HS.


Asunto(s)
ADN Bacteriano/genética , Septicemia Hemorrágica/microbiología , Infecciones por Pasteurella/prevención & control , Pasteurella multocida/genética , Vacunas de ADN/administración & dosificación , Animales , Clonación Molecular , ADN Bacteriano/inmunología , Modelos Animales de Enfermedad , Femenino , Vectores Genéticos/administración & dosificación , Vectores Genéticos/inmunología , Septicemia Hemorrágica/prevención & control , Pasteurella multocida/inmunología , Plásmidos/genética , Ratas , Análisis de Secuencia de ADN , Vacunación , Vacunas de ADN/inmunología
16.
Sci Rep ; 10(1): 2570, 2020 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-32054914

RESUMEN

Uropathogenic Escherichia coli (UPEC) strains cause symptomatic urinary tract infections in humans whereas commensal-like E. coli strains in the urinary bladder cause long-term asymptomatic bacteriuria (ABU). We previously reported that UPEC and ABU strains differentially regulate key DNA methylation and histone acetylation components in the surrogate insect host Galleria mellonella to epigenetically modulate innate immunity-related gene expression, which in turn controls bacterial growth. In this follow-up study, we infected G. mellonella larvae with UPEC strain CFT073 or ABU strain 83972 to identify differences in the expression of microRNAs (miRNAs), a class of non-coding RNAs that regulate gene expression at the post-transcriptional level. Our small RNA sequencing analysis showed that UPEC and ABU infections caused significant changes in the abundance of miRNAs in the larvae, and highlighted the differential expression of 147 conserved miRNAs and 95 novel miRNA candidates. We annotated the G. mellonella genome sequence to investigate the miRNA-regulated expression of genes encoding antimicrobial peptides, signaling proteins, and enzymatic regulators of DNA methylation and histone acetylation in infected larvae. Our results indicate that miRNAs play a role in the epigenetic reprograming of innate immunity in G. mellonella larvae to distinguish between pathogenic and commensal strains of E. coli.


Asunto(s)
Infecciones por Escherichia coli/genética , Inmunidad Innata/genética , MicroARNs/genética , Escherichia coli Uropatógena/genética , Acetilación , Animales , Metilación de ADN/genética , ADN Bacteriano/genética , ADN Bacteriano/inmunología , Modelos Animales de Enfermedad , Infecciones por Escherichia coli/microbiología , Expresión Génica/genética , Genoma de los Insectos/genética , Histonas/genética , Humanos , Larva/microbiología , MicroARNs/clasificación , Anotación de Secuencia Molecular , Mariposas Nocturnas/inmunología , Mariposas Nocturnas/microbiología , Vejiga Urinaria/microbiología , Infecciones Urinarias/genética , Infecciones Urinarias/microbiología , Escherichia coli Uropatógena/patogenicidad , Virulencia/genética
17.
Genes (Basel) ; 11(1)2020 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-31940818

RESUMEN

During the last few years, mitochondrial DNA has attained much attention as a modulator of immune responses. Due to common evolutionary origin, mitochondrial DNA shares various characteristic features with DNA of bacteria, as it consists of a remarkable number of unmethylated DNA as 2'-deoxyribose cytidine-phosphate-guanosine (CpG) islands. Due to this particular feature, mitochondrial DNA seems to be recognized as a pathogen-associated molecular pattern by the innate immune system. Under the normal physiological situation, mitochondrial DNA is enclosed in the double membrane structure of mitochondria. However, upon pathological conditions, it is usually released into the cytoplasm. Growing evidence suggests that this cytosolic mitochondrial DNA induces various innate immune signaling pathways involving NLRP3, toll-like receptor 9, and stimulator of interferon genes (STING) signaling, which participate in triggering downstream cascade and stimulating to produce effector molecules. Mitochondrial DNA is responsible for inflammatory diseases after stress and cellular damage. In addition, it is also involved in the anti-viral and anti-bacterial innate immunity. Thus, instead of entire mitochondrial importance in cellular metabolism and energy production, mitochondrial DNA seems to be essential in triggering innate anti-microbial immunity. Here, we describe existing knowledge on the involvement of mitochondrial DNA in the anti-microbial immunity by modulating the various immune signaling pathways.


Asunto(s)
Bacterias/inmunología , Metilación de ADN/inmunología , ADN Bacteriano/inmunología , ADN Mitocondrial/inmunología , Inmunidad Innata , Mitocondrias/inmunología , Transducción de Señal/inmunología , Animales , Islas de CpG/inmunología , Humanos
18.
Nucleic Acids Res ; 48(1): 249-263, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31667508

RESUMEN

Phage-inducible chromosomal island-like elements (PLEs) are bacteriophage satellites found in Vibrio cholerae. PLEs parasitize the lytic phage ICP1, excising from the bacterial chromosome, replicating, and mobilizing to new host cells following cell lysis. PLEs protect their host cell populations by completely restricting the production of ICP1 progeny. Previously, it was found that ICP1 replication was reduced during PLE(+) infection. Despite robust replication of the PLE genome, relatively few transducing units are produced. We investigated if PLE DNA replication itself is antagonistic to ICP1 replication. Here we identify key constituents of PLE replication and assess their role in interference of ICP1. PLE encodes a RepA_N initiation factor that is sufficient to drive replication from the PLE origin of replication during ICP1 infection. In contrast to previously characterized bacteriophage satellites, expression of the PLE initiation factor was not sufficient for PLE replication in the absence of phage. Replication of PLE was necessary for interference of ICP1 DNA replication, but replication of a minimalized PLE replicon was not sufficient for ICP1 DNA replication interference. Despite restoration of ICP1 DNA replication, non-replicating PLE remained broadly inhibitory against ICP1. These results suggest that PLE DNA replication is one of multiple mechanisms contributing to ICP1 restriction.


Asunto(s)
Bacteriófagos/genética , ADN Helicasas/genética , ADN Bacteriano/genética , Vibrio cholerae/genética , Replicación Viral/genética , Bacteriófagos/metabolismo , Cromosomas Bacterianos/química , Cromosomas Bacterianos/inmunología , Cromosomas Bacterianos/virología , ADN Helicasas/inmunología , Replicación del ADN , ADN Bacteriano/inmunología , Lisogenia/genética , Origen de Réplica , Vibrio cholerae/inmunología , Vibrio cholerae/virología
19.
Front Immunol ; 10: 2185, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31572392

RESUMEN

Persistent immune activation in virologically suppressed HIV-1 patients, which may be the consequence of various factors including microbial translocation, is a major cause of comorbidities. We have previously shown that different profiles of immune activation may be distinguished in virological responders. Here, we tested the hypothesis that a particular profile might be the consequence of microbial translocation. To this aim, we measured 64 soluble and cell surface markers of inflammation and CD4+ and CD8+ T-cell, B cell, monocyte, NK cell, and endothelial activation in 140 adults under efficient antiretroviral therapy, and classified patients and markers using a double hierarchical clustering analysis. We also measured the plasma levels of the microbial translocation markers bacterial DNA, lipopolysaccharide binding protein (LBP), intestinal-fatty acid binding protein, and soluble CD14. We identified five different immune activation profiles. Patients with an immune activation profile characterized by a high percentage of CD38+CD8+ T-cells and a high level of the endothelial activation marker soluble Thrombomodulin, presented with higher LBP mean (± SEM) concentrations (33.3 ± 1.7 vs. 28.7 ± 0.9 µg/mL, p = 0.025) than patients with other profiles. Our data are consistent with the hypothesis that the immune activation profiles we described are the result of different etiological factors. We propose a model, where particular causes of immune activation, as microbial translocation, drive particular immune activation profiles responsible for particular comorbidities.


Asunto(s)
Traslocación Bacteriana/inmunología , Infecciones por VIH/inmunología , VIH-1/inmunología , Sistema Inmunológico/inmunología , Viremia/inmunología , Anciano , Terapia Antirretroviral Altamente Activa , Traslocación Bacteriana/efectos de los fármacos , Biomarcadores/sangre , Biomarcadores/metabolismo , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/virología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/virología , ADN Bacteriano/sangre , ADN Bacteriano/inmunología , Femenino , Microbioma Gastrointestinal/inmunología , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/virología , VIH-1/efectos de los fármacos , VIH-1/fisiología , Humanos , Sistema Inmunológico/virología , Activación de Linfocitos/inmunología , Masculino , Persona de Mediana Edad , Viremia/virología
20.
Immunology ; 158(2): 85-93, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31335975

RESUMEN

Bacterial DNA contains CpG oligonucleotide (ODN) motifs to trigger innate immune responses through the endosomal receptor Toll-like receptor 9 (TLR9). One of the cell surface receptors to capture and deliver microbial DNA to intracellular TLR9 is the C-type lectin molecule DEC-205 through its N-terminal C-type lectin-like domain (CTLD). CD93 is a cell surface protein and member of the lectin group XIV with a CTLD. We hypothesized that CD93 could interact with CpG motifs, and possibly serve as a novel receptor to deliver bacterial DNA to endosomal TLR9. Using ELISA and tryptophan fluorescence binding studies we observed that the soluble histidine-tagged CD93-CTLD was specifically binding to CpG ODN and bacterial DNA. Moreover, we found that CpG ODN could bind to CD93-expressing IMR32 neuroblastoma cells and induced more robust interleukin-6 secretion when compared with mock-transfected IMR32 control cells. Our data argue for a possible contribution of CD93 to control cell responsiveness to bacterial DNA in a manner reminiscent of DEC-205. We postulate that CD93 may act as a receptor at plasma membrane for DNA or CpG ODN and to grant delivery to endosomal TLR9.


Asunto(s)
ADN Bacteriano/inmunología , Regulación de la Expresión Génica/inmunología , Glicoproteínas de Membrana/inmunología , Oligodesoxirribonucleótidos/inmunología , Receptores de Complemento/inmunología , Receptor Toll-Like 9/inmunología , Antígenos CD/genética , Antígenos CD/inmunología , Transporte Biológico/genética , Transporte Biológico/inmunología , Línea Celular Tumoral , Clonación Molecular , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Endosomas/inmunología , Endosomas/metabolismo , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Inflamación , Interleucina-6/genética , Interleucina-6/inmunología , Lectinas Tipo C/genética , Lectinas Tipo C/inmunología , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Antígenos de Histocompatibilidad Menor/genética , Antígenos de Histocompatibilidad Menor/inmunología , Modelos Biológicos , Neuronas/inmunología , Neuronas/metabolismo , Neuronas/patología , Oligodesoxirribonucleótidos/genética , Oligodesoxirribonucleótidos/metabolismo , Unión Proteica , Dominios Proteicos , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/inmunología , Receptores de Complemento/genética , Receptores de Complemento/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal , Receptor Toll-Like 9/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...